
An Implementation of the Efficient Huge Amount of Pseudo-

random Unique Numbers Generator and the Acceleration

Analysis of Parallelization

Yun-Te Lin
1,2

, Yung-Hsiang Huang
1
, Yi-Hao Hsiao

1
, Yu-Jung Cheng

1
,

Jih-Sheng Chang
1
, Sheng-Wen Wang

1
, Fang-Pang Lin

1
, and Chung-Ming Wang

1,2

1
National Center for High-Performance Computing, NARLabs, Hsinchu, Taiwan

2
National Chung Hsing University, Taichung, Taiwan

lsi@narlabs.org.tw

ABSTRACT

Random unique number generator can be used for

generating a series of unpredictable and unrepeatable

numbers within limited ranges of data and numbers.

These numbers are usually distributed equally,

random, independent, unpredictable and unrepeatable.

A good random number generator has to be effective

for a long period and has good statistical distribution

and efficient generating performance. This study

proposes a computational methodology to generate

pseudo-random numbers based on random base

polynomial, which uses less memory but generates a

great deal of unrepeated pseudo-random numbers.

Then this method adopts the multi-thread

parallelization to effectively get the benefits of multi-

core processors to accelerate the generation of a huge

amount of pseudo-random numbers.

Keywords: random unique numbers, pseudo-random

number generator, parallelism, multi-thread, multi-

core.

I. THE IMPORTANCE OF RANDOM

NUMBER GENERATOR AND

PARALLELIZATION

This template provides authors with most of the
formatting specifications needed for preparing
electronic versions of their papers. Margins, column
widths, line spacing, and type styles are built-in.

Random unique number generator can generate a
series of unpredictable and unrepeatable numbers
within limited ranges of data and numbers. These
numbers are usually distributed equally, random,
independent, unpredictable and unrepeatable, which
means that the probability of each generated number is
the same. Also, these numbers cannot be deduced
from other numbers; in other words, every time the
generated numbers have no dependency to each other,
and the next generated number cannot be deduced
from the previous number [1][2].

A good random number generator has to be
effective for a long period and has good statistical
quality and efficient generating performance. Repeated
random number sequence does not easily occur on a
random number with a long period, and it will take a

long time to re-circulate the numbers. Good statistical
qualities suggest that the random number sequence is
independent and with the characteristic of normal
distribution. An efficient computing performance
means that when using the same random seed, the
computer generates the same random number
sequence no matter how many times it executes. The
algorithms have to be fast, and the less memory it uses,
the better [3][4].

Sometimes scientific research and experiments
require a great deal of pseudo-random numbers to
conduct simulations, for instance, producing a large
amount of binary random simulation files (fitting the 0
and 1 normal distribution) or generating a large
number of sine/cosine wave to simulate the general
norm of electronic signals. In the cloud computing
environment which has been very popular, the
correlation between physical and virtual machines and
resource allocation can also use random number
sequence for assigning. In this case, apart from
enhancing the security of being tracked, resources can
be allocated more evenly. However, when the amount
of the random number sequence grows up and cannot
be repeated with high randomness, it requires more
computing complexity and executing time [5].

In the development of high-performance
computing system, because semiconductor
manufacturing technology has been affected by
physical limitations (including process size, power
consumption or cooling problems, etc.), this causes
problems for the CPU clock cycle increasing. Hence,
CPU producers turn to develop multi-core architecture
by putting multiple computing cores into a CPU die to
enhance the computing performance of the whole CPU.
The development of multi-core architecture helps to
improve the efficiency and advantages of the parallel
processing, so the parallel processing has been widely
researched and used in recent years.

Usually, on single computer, multi-threading can
be used to perform parallel processing for the
complicated computing. If there are several computers,
Message Passing Interface can be used to conduct the
parallel processing. Both need to rewrite the original
program and usually we will divide the computing and
data into smaller subsets, and distribute them to
different cores or computing nodes to conduct
calculation. Then collect the results from different
cores and computing nodes to process, then export the

final result. This study uses multi-threading
methodology to develop parallel pseudo-random
number generator, and analyzes the accelerating status
through the designed random number generation when
a huge amount of pseudo-random numbers are
generated.

The method proposed in this study has faster
execution and less memory usage. Yet, when we
generate a large amount of random numbers, the
computing time will increase with the amount of
random numbers. So it WILL TAKE A LONG TIME TO

EXECUTE THE COMPUTING. IN THE Last few years, the
multi-core technology has been more mature and
parallel processing can accelerate the execution speed
of generating huge amounts of pseudo-random
numbers. In this study, we efficiently use multi-core
processors of the computing resources in order to
reach the goal of the parallel processing acceleration.

II. THE INTRODUCTION TO THE

RANDOM NUMBER SEQUENCES AND BASIC

THEORY

The traditional method to generate pseudo-random
numbers usually uses the system clock on the
computer as the random seed and algorithm to
generate random numbers. The random numbers
generated through this method will always generate
different random numbers with different system time.
The advantages of this method are that seeds are easily
retrieved but not easily repeated, which is sufficient to
provide general randomness of random numbers.
However, this method has some shortcomings. For
instance, in need of high quality of random numbers,
like applications of encryption, statistical analysis or
numerical analysis, the randomness of random
numbers will not be accurate exactly. Also, the
random numbers may repeat when tens of millions of
random numbers are being generated. When
unrepeated random numbers are generated through the
method using time as seeds, the pseudo-random
number generator needs to offer an inspecting
mechanism to check the repeated random numbers; if
a repeated random number appears, the generator has
to discard the random number generated this time and
re-generate another new random number until it is
unique, and then acquires sufficient amount of
unrepeated random numbers sequentially. When huge
and unrepeated random numbers are generated
through this method, with the rising amount of random
numbers, it is more possible that the new generated
number will repeats, leading to the need of more extra
random number generating cycles and more
comparing time of random number uniqueness. This
wastes a great deal of computing resources [6].

According to different needs and goals, the
pseudo-random number generator can be designed to
generate different types of derivative random numbers.
For example, the random number sequence that
generates 0 and 1 can be used to simulate the bit

stream of general files; the 1 and -1 random number
can be used to simulate vibration wavelet of
transmitting signals; the random number sequence that
include the natural numbers can be used as the
encryption index for the purpose of data hiding; or to
generate similar natural random number to simulate
Monte Carlo sampling methods [7].

In order to provide pseudo-random number
sequence that have huge amount and random enough
and unrepeated random numbers, this study proposes a
highly efficient pseudo-random number generating
method to generate a series of natural random numbers.
This method uses the minimum of memory to reach
the goal of quickly generating random number
sequence and assures that the random number
sequence will not repeat. Besides, we use the password
that user inputted as the seed of random numbers to
assure that typing the same password always can
generate the same random number sequence. Finally
we conduct the parallel mechanism to enhance the
executing speed of the whole huge amount of pseudo-
random numbers computing.

III. THE PRNG RANDOM NUMBER

GENERATION ALGORITHM

Unlike the traditional pseudo-random number
generator to generate unrepeated random number
sequence, as Fig. 1 shows, the pseudo-random number
generator method offered in this study is to use several
combination of unrepeated random number sequence
that range from 0 to 31 as polynomial calculation
coefficients (the 32 decimal system as the base, which
is similar to a two-dimensional array; the size of the
internal dimension is 32 and the size of the outer
dimension is the amount of layers; and the layer
numbers of the outer dimension happen to be
exponents of corresponding 32 to the power of
numbers). Then we use the random value of every
layer as the index, and have it multiplied by 32
exponential rate corresponded to the coefficient (the
power number). We continue to recursively combine
the numbers of every layer and finally have random
numbers of 32 to the power of K. The number demand
of the random number sequence depends on the to-be-
produced maximum pseudo-random number N, and
then use 32 as the base to proceed factoring
polynomials to find out the layer number K that can
include this maximum pseudo-random number. The
series numbers in the layer index also suggest that
every random number series need to be multiplied by
the power number of 32. For example, the exponential
rate in layer 1 is 0, meaning zero power of 32; the
exponential rate in layer 2 is 1, meaning first power of
32; and so forth. This method allows to quickly get the
unrepeated random number of the K-th power of 32
that is based on 32, and exports the random number
sequence that meets the user-specified range. The Fig.
2 explains the principals of how the pseudo-random
numbers are generated and the algorithmic method.

As Fig. 2 shows, the first step is to generate the
random number base series. Use users’ password as
the seed of random number to generate the base of
random number sequence. In order to make sure the
randomness is sufficient and the numbers of seed in
every layer can be completely different. First, use
users’ password and the default 128-characters
password to do the dual composition of “replace” and
“combine.” Then have every character rotational shift
forward by one character so that the original first
character moves left and becomes the last character
and the second character becomes the first. And bring
in MD5 hashing function to calculate the character
array of 32 hexadecimal values in layer 1. The second
layer is the first layer composition in accordance with
another rotational shifting character to the left. Also
bring in the MD5 hashing function to calculate the 32
character array of hexadecimal numeral system. When
all the needed character arrays of hexadecimal
numeral system (i.e. the number series of layers) are
generated, we can start to generate the random number
series of the base.

We apply the “Unique Number” generating
functions designed in this study for the character
arrays of every layer to change into unrepeated 32
random number series between 0 and 31. Since the
range is not too large and there are only 32 numbers,
we can compare them to see if there are any repeated
numbers and thus the executing speed of generating
the unique number is rather fast. To generate the MD5
base random numbers is changing the characters into
Long Integer through hexadecimal numeral system as
the start position. Then add the number of “Start
Position” with “Count” and have it divided by “Key
Length”, and make the remainder as the “Current
Position”. Induce the “Current Position” to the index
of base series to get the corresponding bit and do
another hexadecimal numeral system transformation,
and finally get a long “Value”. When the “Value” is
even, enlarge the “Value”, which means to have the
length of characters minus the “Value” and then
divided by the length of characters, and get the
remainder. Through the aforementioned method, we
can calculate the “Values” between 0 and 31, and
finally check whether there are any repeated numbers.
When the random numbers between 0 and 31 are
repeated, then we conduct the Bi-Direction
Neighboring Diffusion to search for the closest
“Value” that is not repeated.

The Bi-Direction Neighboring Diffusion expands
to the left or the right in the way of Offset, which
means retrieve unrepeated numbers from the
neighboring numbers. When the Value minus the
displacement value and equals or is bigger than 0, or
plus the displacement value is bigger than the length
of the characters, then Offset to the left diffusion
calculation; if it’s the contrary, then Offset to the right
diffusion calculation. Through this continuous Bi-
Direction Neighboring Diffusion, we can check if the
value is repeated and quickly find the unrepeated value.
The advantage of this Bi-Direction Neighboring
Diffusion is that you can use the minimum times of
Offset (or search) to find the usable and unrepeated
value and there is no need to examine all the available
values from the beginning (the worst condition is
O(n)=16, far smaller than O(n)=31).

Last but not least, when the password characters
are changed into the base series for calculating random
numbers, we can start to generate 32 to the K power
pseudo-random numbers. When the random number is
bigger, there are more base layers needed, and have
exponents of 32 as the key to decide the required
maximum number of layers. For instance, when
generating one million unrepeated pseudo-random
numbers of which the minimum value is 1 and the
maximum value is one million, we need at least four
bases, i.e. at least generating 32 to the fourth power
random numbers, and retrieve all the random numbers
with the range.

We can also change the random natural number
generated through the pseudo-random number
generator into the 0/1 random bit number of Normal
Distribution between 0 and 1. 0/1 random bit number
means a random number combined from 0 and 1, and
equals the 0 and 1 Bit in computer. So it can be used to
simulate the archives or the payload of the network
packets. There are many ways to changing into 0/1
random bit numbers, the easiest way of which is to do
the modulus of the random number and have it divided
by 2, and the remainder is 0 or 1, which accords with
the characteristics of Normal Distribution.

IV. PARALLEL ACCELERATION OF THE

RANDOM NUMBER GENERATION

ALGORITHM

When the random number generator generates
random numbers, all the random numbers have to be
saved immediately, and usually arrays are used to
store all the random numbers temporarily. To use the
method of array requires the need to define an array of
fixed size, and then start to save the data in the array.
The data cannot be stored outside the array definition,
or else there will be a buffer overflow problem. This
study adopts the multi-threaded method to do the
parallelization of the pseudo-random number
generator, and user can decide how many threads to
perform the parallel random number generation. Since
using the multi-thread, the amount of the random

Figure 1. Generating random number via the random number base

polynomial method.

numbers generated within the range of random number
demand by each thread will be uncertain, it is hard to
define an array effectively that fits the size to store the
random numbers of this thread. This study proposes
four different methods to solve the random number
storing problem of every thread, and compare these
four methods to see the advantages and shortcomings.

The first method is to use link-list to increase or
decrease the temporary space of storing random
numbers according to the need. In order to use the
minimum memory, this study has designed the
simplest node data structure, which aims to use the
least memory. In the node structure, define a Long
integer variable for storing random number and define
a Pointer for pointing to the next Node address. This
Pointer variable can realize the Single link-list way to
store the next generated random number; when a new
random number is generated, then a Node is added to
store this random number. The advantage of Single
link-list is that it can dynamically increase the length
of link according to the amount of random numbers,
but the shortcoming is that every node requires extra
space recording the address of next random number
node. Generally speaking, in the 32-bit operating
system, every node requires four bytes to store the
memory address of next node, and 64-bit operating
system needs eight bytes (it also differs based on

different computer architecture and compiler).
Therefore, the link-list method to store random
numbers costs more memory space than the array
method.

The method regarding the link-list requires more
extra memory, and hence use array to temporarily
store the random number sequence, and dynamically
adjust the size of memory of this array through
realloc() function in C/C++ to increase the size of the
array to prevent from the buffer overflow situations.
The other three methods respectively use different call
timing design of realloc() function. The first one is that
whenever there is a new random number, it will call
the realloc() function to add the array by 1 in every
thread. The second is that configure an array in every
thread according to the amount of all random numbers;
after the random numbers are generated, realloc()
function is called to reduce the size of the array to
accord with the amount of random numbers that are
actually generated. The third design is that after all the
random numbers are divided by the amount of threads,
and there will be an average number p (p=N/m). Each
thread will be assigned to the array of the p, which
means all the arrays of the random numbers are
distributed to every thread. When the amount of
random numbers exceeds the preconfigured size of
array, the first method will be adopted to increasing

Figure 2. The process of generating random numbers designed in the study.

the array through realloc() function. On the contrary, if
after the random numbers are generated and the
amount of random numbers is less than the size of the
array, then the second method will be adopted to
decreasing the array to meet with the actual size of the
array of the random numbers.

The aforementioned three methods to dynamically
adjusting the array to temporarily store random
numbers have their own advantages and shortcomings.
The advantage of the first method is that it can
completely and dynamically adjust the size of the
array according to the amount of random numbers, and
always maintain the optimal memory usage. However,
since realloc() function is required to adjust the size of
the array whenever random numbers are generated, to
re-allocate the virtual memory frequently is necessary,
which leads to more extra time on the reallocation of
memory. And the executing number of re-allocating
the size of memory approximately equals the amount
of random numbers (N). The advantage of the second
method is that the realloc() function is used the least,
the number of which equals the amount of multi-
thread m, but the shortcoming is that in the beginning
it will occupy the virtual memory with m arrays of all
the random numbers (m*N). The third method
combines the advantage of the first with that of the
second; the occupied total virtual memory space in the
beginning is the size of the array of the total amount of
random numbers N (m*p=N). The realloc() function
only appears when the amount of random numbers
exceeds the size of the array within the threads and
when reducing the size of the array, so it is used far
less than the first method.

The random number generator in this study uses
polynomial algorithm, and the main structure rests on
the multi-layer and fixed-length random number base
array (Length =32), and therefore there are several
method to taken the computing apart when processing
the parallelization. The most basic method is parallel
cutting, which aims to do the partition of the random
number computing base in Layer 1. As Fig. 3 shows,
when using the 4 threads to do the parallel computing,
have the random number base array in Layer 1 cut into
4 sets of random number array (each set has 8 random
numbers), and respectively bring in the sets of random
numbers and the random number base array of the
lower layers (from Layer 2 to Layer K) to every thread
to do the computing. After finishing the computing,
have the random numbers from each thread combined
according to the series to generate all the pseudo-
random number sequence. Yet, the shortcoming of this
method is that when the amount of threads cannot be
divided by 32, then all the computing cannot be
equally distributed to each thread. In addition, since
each layer has only 32 random numbers, it can only
use the 32 threads at most.

Given that there are several restrictions regarding
the first method of parallel computing partition, this
study adopts the method of equally distributing the
total amount to do the computing partition. When
doing the partitioning of equal distribution, have the
combinations of all the random number computing

base array cut and distribute the cut range of the array
to each thread to do the computing. The combinations
of all the random number base arrays equal the
computing number of times of all the random numbers;
if the random number base array of 3 layers is used,
then the total number of times of computing the
random numbers is 32 to the third power. After cutting
and equally distributing, the computing range of each
thread appears to be a vertical partition. Take 4 threads
for example, the array computing range of the first
thread starts computing from [the first in Layer 1/ the
first in Layer 2/ the first in Layer 3] and circulate the
computing to [the eighth in Layer 1/ the thirty-second
in Layer 2/ the thirty-second in Layer 3] (equivalent to
multidimensional arrays [0][0][0] ~ [7][31][31]). The
computing range of the second thread starts from [the
ninth in Layer 1/ the first in Layer 2/ the first in Layer
3] to [the sixteenth in Layer 1/ the thirty-second in
Layer 2/ the thirty-second in Layer 3] (equivalent to
multidimensional arrays [8][0][0] ~ [15][31][31]).
Nearly every thread can get to 8 * 32 * 32 random
number computing combinations, i.e. approximate
amount of random numbers generated. Fig. 4 shows
the diagram of the aforementioned partition method of
equal distribution.

Fig. 5 shows the detailed executing progress of the
method of equally distributing the total amounts.
According to the demanding base layer numbers, have
the total amount of random number calculated and
equally distribute the total amount based on the
amount of threads. After that, every thread gets the
computing range among the total amount, and the
computing ranges turns into the starting position and
ending position of the array, and then it is the
computing range of an array. Every thread with
different array ranges is calculated to get the random
numbers that meets the demand, and send the result to
the main thread, and finally main thread collects all of
the random number series of every thread to get a
complete computing result of random numbers.

The method of equally distributing and partitioning
the total amount to cut the computing base arrays can
not only effectively solve the problem that the first
partition method can only use 32 threads at most, but
can also more equally distribute random number
computing times to each thread, making the
parallelized pseudo-random number generator
generate pseudo-random number sequence more
efficiently.

Figure 3. The partition of random number sequence base in layer 1.

V. THE DESIGN OF PARALLELIZED

EXPERIMENTAL MODEL AND ANALYSIS OF

EXPERIMENTAL DATA

To focus on the pseudo-random number generation
and the parallelization designed in the study, we start
from one thread to gradually increase the amount of
threads (increasing four threads every time) to test the
speeding effect of its generation of random numbers
and test the using rate of memory of the four methods
of temporarily storing random numbers. The
experimentation is divided into two parts, multi-
threading acceleration test and memory usage amount
test. (1). During the experiment of the multi-threading
acceleration test, we respectively test the four methods
of temporarily storing random numbers and test the
amount of random numbers, of which the number of
layer of the random number base is 5, 6 and 7, and
then take down the average time of each number of
layers of generating random numbers. (2). During the
memory usage amount test, we use 18 threads to
respectively test memory usage amount when the four
methods of temporarily storing random numbers
generate one billion (1G) pseudo-random numbers,
and the sampling interval is 1 second. Table 1 shows
the hardware specifications of the test host computer
and the experimental design model.

As for the part of multi-threading acceleration test,
first of all, we conduct the test on the original pseudo-
random number generator (without the multi-threaded
parallelization). This pseudo-random number
generator runs the usual single-thread program and

uses arrays to temporarily store all the generated
random numbers. Table 2 is the result data of the time
of generating pseudo-random numbers. If the index is
the same, then the time of generating random
numbers is practically the same. The rightmost
column is the average time of the random number
generation of each layer.

Table 3 demonstrates the result data of speeding
test of the parallelized pseudo-random number
generator designed in this study. The left column is
the amount of the threads, and we start from one
thread and gradually increase four threads to test until
reaching 60 threads. In the test of every thread
amount, we also test the links and the three method of
temporarily storing random numbers which use arrays.
To focus on all the random numbers in every random
number base layers (index=5,6,7) and test the time
they are generated, and then calculate to get the
average time of random number generation of this
layer. The experiment data do not include the

TABLE 1. HARDWARE SPECIFICATIONS OF THEST HOST COMPUTER

AND THE MODEL OF EXPERIMENT.

Specification of the computer:

CPU Intel(R) Xeon(R) E7530 CPU @ 1.87GHz (true 24

cores CPU, HT enabled)

Memory 529,322,584 KB

OS Linux 2.6.32-5-amd64 x86 64 GNU/Linux

Preparation operations:

1. Clear the Linux cache - "echo 3 > /proc/sys/vm/drop_caches"

2. Flush the disk cache - "sync"

The number of base layers and the amount of demanding

random numbers:

1. Multi-thread acceleration test: range of random numbers

between 1 ~ following values respectively
- 5 layers { 1048577, 2097152, 4194304, 8388608, 16777216,

 33554432}

- 6 layers { 33554433, 67108864, 134217728, 268435456,
 536870912, 1073741824}

- 7 layers {1073741825, 2147483648, 4294967296}

2. Memory usage test: range of random numbers between
1 ~ 1,073,741,824

Multi-thread stepping interval:

 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60

Methods of temporarily storing random numbers:

1. Link List: Single Direction

2. Array Method 1: Reallocate Array Size Random Number N
Times

3. Array Method 2: Reallocate Array Size T Threads Times

4. Array Method 3: Reallocate Array Size 1 Time or size exceed

N Times

Memory usage amount:

1. Run the "ps -au" command to get the values of "VSZ" and
"RSS"

2. Use 18 threads to respectively test memory usage amount

3. Sampling interval is 1 second

4. Take down the memory usage since the threads generated and
the computation finished

Figure 5. The process of partition method of equal distribution of

the total amount (4 threads).

Figure 4. Diagram of partition method of equal distribution of the

total amount.

random number layers that are 2,3,4; when the
random number base layers are four and the lower
layers, the generation time is less than 1 second and
thus cannot effectively have the speeding effect.
About the characteristics of multi-threading
acceleration curve, please refer to Fig. 6, Fig. 7 and
Fig. 8.

Fig. 6 shows the graph of the average time of
generating random number of each thread amount
when using 5-layers random number base. When using
the link-list as the method to temporarily store random
numbers, if the amount of threads is 24, it will reach
the best speeding effect; but when the amount of
threads is 28, the speed will start to decrease, and then
the random number generation time of each thread
will be half of time one thread (the average time of
one thread is 18 seconds, and the average time of 36 to
60 threads is 9 seconds). When using the first array
storage method, the acceleration effect of multi-
threads will stop accelerating after using
approximately 12 threads. Compared to the previous
two results, the second array method and the third
array storage method have better multi-thread
acceleration effect but stop accelerating after the
thread usage amount reaches 24.

Fig. 7 is the graph of the average time of
generating random number of each thread amount
when using 6-layers random number base. Regarding
the link-list, when the amount of threads is 16, it
reaches the highest acceleration effect; when the
amount of threads is more than 16, the acceleration
will decrease. In the first method of array storage,

when the amounts of threads are 4 and 8, the speed
significantly decreases to be slower than 1 thread by
one time. When the amount of threads is 16, the
acceleration effect is the most obvious, but when the

TABLE 3. THE RESULT DATA OF MULTI-THREADING PARALLEL ACCELERATION.

 Index = 5
{1048577, 2097152, 4194304, 8388608, 16777216, 33554432}

Index = 6
{33554433, 67108864, 134217728, 268435456, 536870912, 1073741824}

Index = 7
{1073741825,2147483648,4294967296}

Link List

Array Method
Link List

Array Method
Link List

Array Method

 1 2 3 1 2 3 1 2 3

1 18.39 18.19 17.95 17.76 730.77 721.86 710.72 710.10 27411.18 27231.94 27206.41 27320.43

4 4.91 7.57 4.52 4.53 189.25 1525.99 177.73 177.40 6903.46 57735.83 6831.66 6843.92

8 3.02 4.98 2.30 2.30 106.20 1265.22 88.82 88.83 3482.71 10093.27 3419.55 3408.57

12 2.53 3.89 1.76 1.71 84.35 600.17 59.55 59.58 2356.13 16123.72 2279.62 2285.15

16 2.38 3.67 1.13 1.11 83.45 256.46 44.69 44.71 2027.33 12746.84 1786.12 1786.95

20 2.37 3.62 0.92 0.92 157.06 306.62 35.81 36.21 1653.19 7721.28 1431.27 1430.06

24 2.34 3.65 0.77 0.80 249.21 256.58 29.82 30.40 1414.60 11899.90 1199.95 1216.53

28 2.36 3.70 0.85 0.85 270.89 266.41 33.91 33.93 1420.65 6903.53 1366.39 1364.76

32 7.24 3.61 0.76 0.77 293.45 239.03 29.69 29.75 1417.06 6762.04 1202.81 1197.45

36 8.71 3.76 0.68 0.68 302.95 207.93 26.80 26.52 1475.52 6594.05 1073.29 1079.98

40 8.66 3.99 0.75 0.77 300.35 178.74 26.45 26.51 1739.71 5862.46 1108.14 1114.84

44 8.75 4.10 0.70 0.70 323.99 168.95 24.68 24.68 2150.40 5090.79 1035.14 1036.77

48 8.62 4.67 0.73 0.76 331.93 177.47 23.59 23.48 2267.76 5361.10 971.01 970.22

52 9.02 4.71 0.80 0.79 334.09 157.68 24.52 24.59 2657.33 4861.39 974.48 981.47

56 9.03 5.06 0.75 0.77 336.50 189.63 24.30 24.63 2756.16 3858.91 976.37 980.14

60 8.89 5.18 0.77 0.75 338.10 169.64 24.21 24.30 2832.96 4552.38 986.64 978.74

TABLE 2. THE RESULT DATA OF ORIGINAL PSEUDO-RANDOM

NUMBER GENERATOR

of

index
Number of values

Generation times

Times (sec) Avg.

5 32^4+1 1,048,577 17.442 17.471

 32^4*2 2,097,152 16.973

 32^4*4 4,194,304 17.375

 32^4*8 8,388,608 17.670

 32^4*16 16,777,216 17.809

 32^5 33,554,432 17.559

6 32^5+1 33,554,433 698.639 703.980

 32^5*2 67,108,864 694.572

 32^5*4 134,217,728 696.448

 32^5*8 268,435,456 704.053

 32^5*16 536,870,912 711.341

 32^6 1,073,741,824 718.831

7 32^6+1 1,073,741,825 25948.942
26011.56

2

 32^6*2 2,147,483,648 26010.398

 32^6*4 4,294,967,296 26075.346

amount of threads is more than 20, the acceleration
effect is not clear. In the second and third array storage
methods, it is obvious to tell there are two phases of
acceleration effect. When the amount of threads is 24,
it reaches the best effect in the first phase; when the
amount of threads is 48, it gets a faster acceleration
effect than the first phase, and the acceleration effect is
close to zero after that.

Fig. 8 is the graph of the average time of
generating random number of each thread amount
when using 7-layers random number base. When using
40 threads, the link-list reaches the best acceleration
effect and then begins to slow down. When using the
first array storage method, the acceleration effect is the
worst and cannot compete with the other three. When
using four threads, the acceleration effect is negative;
when using 8 threads, the acceleration effect begins to
be clear but is not stable. Using the second and the
third array storage methods can reach the best
acceleration effect of two phases with the 24 threads
and 48 threads.

Table 4 shows the four parallelized random
number storage methods that have the threads amount
of the best acceleration effect and acceleration rate.
Using the second and third method of array storage
can reach the best acceleration rate, 29.83 and 29.97 in
the 6-layers random number base.

The four methods to temporarily storing random
numbers proposed in this study helps solve the
problem of the inability to accurately allocate random
number storage space and allows each thread to
temporarily store all the generated random numbers of
this thread. However, according to the test result,
when generating different amount of pseudo-random
numbers, the four methods have different acceleration
and even deceleration. When using only 1 thread, there
is no significant difference between the four methods’
speed of generating random numbers, but when the
amount of threads starts to rise, the difference comes
to be obvious. The second and third array methods of
storing random numbers have nearly the same and best
acceleration effect. According to Table 4, when the
random number base is 5, the second method and the
third method of array storage use 36 threads and can
reach the acceleration by 25 times at most. When the
random number base is 6, the second method and the
third method of array storage use 48 threads and can
reach the acceleration by 29 times (nearly 30 times) at
most. When the random number base is 7, the second
method and the third method of array storage use 48
threads and can reach the acceleration by 26 times at
most. Also, it is ostensible that when there are 24 and
48 threads, the acceleration reaches the best effect, and
this has to do with our test host computer and meets
with our initial expectation that the idealist number of
acceleration should be that the number of actual core
number is between 24 and 48 simulated by Hyper-
Threading.

Combining the acceleration effect of the multi-
threaded parallel experiments with the test result of the
two parts of memory usage rate, we find that the
acceleration effect is the best when using the second
method and the third method of array storage. And
between these two, the third method has better
memory usage amount because the usage amount of
VSZ is far smaller than the second method. In other
words, if we apply the second array method to some

TABLE 4. THE BEST ACCELERATION RATE OF MULTI-THREADS.

Index
Link

List

Array Method

1 2 3

5 # of threads 24 32 36 36

 Best speed up rate 7.46 4.83 25.35 25.50

6 # of threads 16 52 48 48

 Best speed up rate 8.43 4.46 29.83 29.97

7 # of threads 24 56 48 48

 Best speed up rate 18.38 6.74 26.78 26.80

Figure 8. The average time of generating random numbers of 7-

layers random number base.

Figure 7. The average time of generating random numbers of 6-

layers random number base.

Figure 6. The average time of generating random numbers of 5-

layers random number base.

host computers that do not have big memory space
enough, the system might out of memory.

VI. RELATED APPLICATION AND

EXPERIMENT WITH OUR PRNG

Fig. 9 and Fig. 10 show an application of the 3D
steganography with mesh permutation algorithm in 3D
model, the order sequence of the vertices and polygons
was generated with our PRNG method.

Fig. 11~14 show four applications of the 2D HDRI
(high dynamic range image) steganography with
multiple-base algorithm, the embedding sequence of
the secure message was also generated with our PRNG
method.

VII. CONCLUSION AND FUTURE WORK

The pseudo-random number generator in this study
can effectively use small amount of memory to
generate a great deal of pseudo-random numbers, and
make sure there will not be any repeated random
numbers. Also, the parallel architecture of multi-
threads helps increase the speed of generating pseudo-
random numbers, and the acceleration effect can reach
30 times at most. Multi-threads apply the method of
equal distribution to assign random number computing
to every thread and further increase the efficiency of
multi-threads. At the same time, through the equal
distribution of array sizes, we adjust the method of
temporarily storing random numbers of the array sizes
according to the actual usage amount to offer a better
memory usage rate. Thusly, the pseudo-random
number generator we propose has the three major
characteristics of memory saving, fast execution
efficiency, and the usage of multi-thread
parallelization to generate a huge amount of pseudo-
random numbers.

This study has finished implementing the method
of combining the multi-layer random number base to
generate a great deal of pseudo-random numbers and
the multi-thread version of pseudo-random number
generator. In the future, we can further the study to see
how to distribute the computing more equally through
parallelized partition and how to reach the allocation
optimization of multi-threading dynamic memory.

Figure 11. Our PRNG used in the 2D HDRI Steganography.

Figure 10. Our PRNG used in the 3D Permutation Steganography

(shown in Wireframe mode).

Figure 9. Our PRNG used in the 3D Permutation Steganography

(shown in Surface mode).

REFERENCES

[1] A. De Matteis, S. Pagnutti, "Long-range correlations in linear
 and non-linear random number generators”, Parallel Computing
 14, 1990, pp. 207-210.

[2] David K. Gifford, "Natural Random Numbers", Laboratory For
 Computer Science, Massachusetts Institute of Technology, 1998.

[3] Charles W. O'Donnell, G. Edward Suh, and Srinivas Devadas,
 "PUF-Based Random Number Generation", Computer Science
 and Artificial Intelligence Laboratory, Massachusetts Institute
 of Technology, 2004.

 [4] P. Hellekalek, "Good random number generators are (not so)
 easy to find", Mathematics and Computers in Simulation 46,
 1998, pp. 485-505.

[5] P. L'Ecuyer, “Random number generation”, In Jerry Banks
 (Ed.), Handbook on Simulation, Wiley, New York, 1997.

[6] D.E. Knuth, “The Art of Computer Programming”, Vol. 2,
 Addison-Wesley, Reading, Mass., 2nd ed., 1981.

[7] H. Niederreiter, “Random Number Generation and Quasi-
 Monte Carlo Methods”, SIAM, Philadelphia, 1992.

Figure 14. Our PRNG used in the 2D HDRI Steganography.

Figure 13. Our PRNG used in the 2D HDRI Steganography.

Figure 12. Our PRNG used in the 2D HDRI Steganography.

