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ABSTRACT 

Random unique number generator can be used for 

generating a series of unpredictable and unrepeatable 

numbers within limited ranges of data and numbers. 

These numbers are usually distributed equally, 

random, independent,  unpredictable and unrepeatable. 

A good random number generator has to be effective 

for a long period and has good statistical distribution 

and efficient generating performance. This study 

proposes a computational methodology to generate 

pseudo-random numbers based on random base 

polynomial, which uses less memory but generates a 

great deal of unrepeated pseudo-random numbers. 

Then this method adopts the multi-thread 

parallelization to effectively get the benefits of multi-

core processors to accelerate the generation of a huge 

amount of pseudo-random numbers. 

Keywords: random unique numbers, pseudo-random 

number generator, parallelism, multi-thread, multi-

core. 

I. THE IMPORTANCE OF RANDOM 

NUMBER GENERATOR AND 

PARALLELIZATION 

This template provides authors with most of the 
formatting specifications needed for preparing 
electronic versions of their papers. Margins, column 
widths, line spacing, and type styles are built-in. 

Random unique number generator can generate a 
series of unpredictable and unrepeatable numbers 
within limited ranges of data and numbers. These 
numbers are usually distributed equally, random, 
independent, unpredictable and unrepeatable, which 
means that the probability of each generated number is 
the same. Also, these numbers cannot be deduced 
from other numbers; in other words, every time the 
generated numbers have no dependency to each other, 
and the next generated number cannot be deduced 
from the previous number [1][2]. 

A good random number generator has to be 
effective for a long period and has good statistical 
quality and efficient generating performance. Repeated 
random number sequence does not easily occur on a 
random number with a long period, and it will take a 

long time to re-circulate the numbers. Good statistical 
qualities suggest that the random number sequence is 
independent and with the characteristic of normal 
distribution. An efficient computing performance 
means that when using the same random seed, the 
computer generates the same random number 
sequence no matter how many times it executes. The 
algorithms have to be fast, and the less memory it uses, 
the better [3][4]. 

Sometimes scientific research and experiments 
require a great deal of pseudo-random numbers to 
conduct simulations, for instance, producing a large 
amount of binary random simulation files (fitting the 0 
and 1 normal distribution) or generating a large 
number of sine/cosine wave to simulate the general 
norm of electronic signals. In the cloud computing 
environment which has been very popular, the 
correlation between physical and virtual machines and 
resource allocation can also use random number 
sequence for assigning. In this case, apart from 
enhancing the security of being tracked, resources can 
be allocated more evenly. However, when the amount 
of the random number sequence grows up and cannot 
be repeated with high randomness, it requires more 
computing complexity and executing time [5]. 

In the development of high-performance 
computing system, because semiconductor 
manufacturing technology has been affected by 
physical limitations (including process size, power 
consumption or cooling problems, etc.), this causes 
problems for the CPU clock cycle increasing. Hence, 
CPU producers turn to develop multi-core architecture 
by putting multiple computing cores into a CPU die to 
enhance the computing performance of the whole CPU. 
The development of multi-core architecture helps to 
improve the efficiency and advantages of the parallel 
processing, so the parallel processing has been widely 
researched and used in recent years. 

Usually, on single computer, multi-threading can 
be used to perform parallel processing for the 
complicated computing. If there are several computers, 
Message Passing Interface can be used to conduct the 
parallel processing. Both need to rewrite the original 
program and usually we will divide the computing and 
data into smaller subsets, and distribute them to 
different cores or computing nodes to conduct 
calculation. Then collect the results from different 
cores and computing nodes to process, then export the 



final result. This study uses multi-threading 
methodology to develop parallel pseudo-random 
number generator, and analyzes the accelerating status 
through the designed random number generation when 
a huge amount of pseudo-random numbers are 
generated. 

The method proposed in this study has faster 
execution and less memory usage. Yet, when we 
generate a large amount of random numbers, the 
computing time will increase with the amount of 
random numbers. So it WILL TAKE A LONG TIME TO 

EXECUTE THE COMPUTING. IN THE Last few years, the 
multi-core technology has been more mature and 
parallel processing can accelerate the execution speed 
of generating huge amounts of pseudo-random 
numbers. In this study, we efficiently use multi-core 
processors of the computing resources in order to 
reach the goal of the parallel processing acceleration. 

 

II. THE INTRODUCTION TO THE 

RANDOM NUMBER SEQUENCES AND BASIC 

THEORY 

The traditional method to generate pseudo-random 
numbers usually uses the system clock on the 
computer as the random seed and algorithm to 
generate random numbers. The random numbers 
generated through this method will always generate 
different random numbers with different system time. 
The advantages of this method are that seeds are easily 
retrieved but not easily repeated, which is sufficient to 
provide general randomness of random numbers. 
However, this method has some shortcomings. For 
instance, in need of high quality of random numbers, 
like applications of encryption, statistical analysis or 
numerical analysis, the randomness of random 
numbers will not be accurate exactly. Also, the 
random numbers may repeat when tens of millions of 
random numbers are being generated. When 
unrepeated random numbers are generated through the 
method using time as seeds, the pseudo-random 
number generator needs to offer an inspecting 
mechanism to check the repeated random numbers; if 
a repeated random number appears, the generator has 
to discard the random number generated this time and 
re-generate another new random number until it is 
unique, and then acquires sufficient amount of 
unrepeated random numbers sequentially. When huge 
and unrepeated random numbers are generated 
through this method, with the rising amount of random 
numbers, it is more possible that the new generated 
number will repeats, leading to the need of more extra 
random number generating cycles and more 
comparing time of random number uniqueness. This 
wastes a great deal of computing resources [6]. 

According to different needs and goals, the 
pseudo-random number generator can be designed to 
generate different types of derivative random numbers. 
For example, the random number sequence that 
generates 0 and 1 can be used to simulate the bit 

stream of general files; the 1 and -1 random number 
can be used to simulate vibration wavelet of 
transmitting signals; the random number sequence that 
include the natural numbers can be used as the 
encryption index for the purpose of data hiding; or to 
generate similar natural random number to simulate 
Monte Carlo sampling methods [7]. 

In order to provide pseudo-random number 
sequence that have huge amount and random enough 
and unrepeated random numbers, this study proposes a 
highly efficient pseudo-random number generating 
method to generate a series of natural random numbers. 
This method uses the minimum of memory to reach 
the goal of quickly generating random number 
sequence and assures that the random number 
sequence will not repeat. Besides, we use the password 
that user inputted as the seed of random numbers to 
assure that typing the same password always can 
generate the same random number sequence. Finally 
we conduct the parallel mechanism to enhance the 
executing speed of the whole huge amount of pseudo-
random numbers computing. 

 

III. THE PRNG RANDOM NUMBER 

GENERATION ALGORITHM 

Unlike the traditional pseudo-random number 
generator to generate unrepeated random number 
sequence, as Fig. 1 shows, the pseudo-random number 
generator method offered in this study is to use several 
combination of unrepeated random number sequence 
that range from 0 to 31 as polynomial calculation 
coefficients (the 32 decimal system as the base, which 
is similar to a two-dimensional array; the size of the 
internal dimension is 32 and the size of the outer 
dimension is the amount of layers; and the layer 
numbers of the outer dimension happen to be 
exponents of corresponding 32 to the power of 
numbers). Then we use the random value of every 
layer as the index, and have it multiplied by 32 
exponential rate corresponded to the coefficient (the 
power number). We continue to recursively combine 
the numbers of every layer and finally have random 
numbers of 32 to the power of K. The number demand 
of the random number sequence depends on the to-be-
produced maximum pseudo-random number N, and 
then use 32 as the base to proceed factoring 
polynomials to find out the layer number K that can 
include this maximum pseudo-random number. The 
series numbers in the layer index also suggest that 
every random number series need to be multiplied by 
the power number of 32. For example, the exponential 
rate in layer 1 is 0, meaning zero power of 32; the 
exponential rate in layer 2 is 1, meaning first power of 
32; and so forth. This method allows to quickly get the 
unrepeated random number of the K-th power of 32 
that is based on 32, and exports the random number 
sequence that meets the user-specified range. The Fig. 
2 explains the principals of how the pseudo-random 
numbers are generated and the algorithmic method. 



 

As Fig. 2 shows, the first step is to generate the 
random number base series. Use users’ password as 
the seed of random number to generate the base of 
random number sequence. In order to make sure the 
randomness is sufficient and the numbers of seed in 
every layer can be completely different. First, use 
users’ password and the default 128-characters 
password to do the dual composition of “replace” and 
“combine.” Then have every character rotational shift 
forward by one character so that the original first 
character moves left and becomes the last character 
and the second character becomes the first. And bring 
in MD5 hashing function to calculate the character 
array of 32 hexadecimal values in layer 1. The second 
layer is the first layer composition in accordance with 
another rotational shifting character to the left. Also 
bring in the MD5 hashing function to calculate the 32 
character array of hexadecimal numeral system. When 
all the needed character arrays of hexadecimal 
numeral system (i.e. the number series of layers) are 
generated, we can start to generate the random number 
series of the base. 

We apply the “Unique Number” generating 
functions designed in this study for the character 
arrays of every layer to change into unrepeated 32 
random number series between 0 and 31. Since the 
range is not too large and there are only 32 numbers, 
we can compare them to see if there are any repeated 
numbers and thus the executing speed of generating 
the unique number is rather fast. To generate the MD5 
base random numbers is changing the characters into 
Long Integer through hexadecimal numeral system as 
the start position. Then add the number of “Start 
Position” with “Count” and have it divided by “Key 
Length”, and make the remainder as the “Current 
Position”. Induce the “Current Position” to the index 
of base series to get the corresponding bit and do 
another hexadecimal numeral system transformation, 
and finally get a long “Value”. When the “Value” is 
even, enlarge the “Value”, which means to have the 
length of characters minus the “Value” and then 
divided by the length of characters, and get the 
remainder. Through the aforementioned method, we 
can calculate the “Values” between 0 and 31, and 
finally check whether there are any repeated numbers. 
When the random numbers between 0 and 31 are 
repeated, then we conduct the Bi-Direction 
Neighboring Diffusion to search for the closest 
“Value” that is not repeated. 

The Bi-Direction Neighboring Diffusion expands 
to the left or the right in the way of Offset, which 
means retrieve unrepeated numbers from the 
neighboring numbers. When the Value minus the 
displacement value and equals or is bigger than 0, or 
plus the displacement value is bigger than the length 
of the characters, then Offset to the left diffusion 
calculation; if it’s the contrary, then Offset to the right 
diffusion calculation. Through this continuous Bi-
Direction Neighboring Diffusion, we can check if the 
value is repeated and quickly find the unrepeated value. 
The advantage of this Bi-Direction Neighboring 
Diffusion is that you can use the minimum times of 
Offset (or search) to find the usable and unrepeated 
value and there is no need to examine all the available 
values from the beginning (the worst condition is 
O(n)=16, far smaller than O(n)=31). 

Last but not least, when the password characters 
are changed into the base series for calculating random 
numbers, we can start to generate 32 to the K power 
pseudo-random numbers. When the random number is 
bigger, there are more base layers needed, and have 
exponents of 32 as the key to decide the required 
maximum number of layers. For instance, when 
generating one million unrepeated pseudo-random 
numbers of which the minimum value is 1 and the 
maximum value is one million, we need at least four 
bases, i.e. at least generating 32 to the fourth power 
random numbers, and retrieve all the random numbers 
with the range.  

We can also change the random natural number 
generated through the pseudo-random number 
generator into the 0/1 random bit number of Normal 
Distribution between 0 and 1. 0/1 random bit number 
means a random number combined from 0 and 1, and 
equals the 0 and 1 Bit in computer. So it can be used to 
simulate the archives or the payload of the network 
packets. There are many ways to changing into 0/1 
random bit numbers, the easiest way of which is to do 
the modulus of the random number and have it divided 
by 2, and the remainder is 0 or 1, which accords with 
the characteristics of Normal Distribution. 

 

IV. PARALLEL ACCELERATION OF THE 

RANDOM NUMBER GENERATION 

ALGORITHM 

When the random number generator generates 
random numbers, all the random numbers have to be 
saved immediately, and usually arrays are used to 
store all the random numbers temporarily. To use the 
method of array requires the need to define an array of 
fixed size, and then start to save the data in the array. 
The data cannot be stored outside the array definition, 
or else there will be a buffer overflow problem. This 
study adopts the multi-threaded method to do the 
parallelization of the pseudo-random number 
generator, and user can decide how many threads to 
perform the parallel random number generation. Since 
using the multi-thread, the amount of the random  

 

Figure 1. Generating random number via the random number base 

polynomial method. 



 

numbers generated within the range of random number 
demand by each thread will be uncertain, it is hard to 
define an array effectively that fits the size to store the 
random numbers of this thread. This study proposes 
four different methods to solve the random number 
storing problem of every thread, and compare these 
four methods to see the advantages and shortcomings. 

The first method is to use link-list to increase or 
decrease the temporary space of storing random 
numbers according to the need. In order to use the 
minimum memory, this study has designed the 
simplest node data structure, which aims to use the 
least memory. In the node structure, define a Long 
integer variable for storing random number and define 
a Pointer for pointing to the next Node address. This 
Pointer variable can realize the Single link-list way to 
store the next generated random number; when a new 
random number is generated, then a Node is added to 
store this random number. The advantage of Single 
link-list is that it can dynamically increase the length 
of link according to the amount of random numbers, 
but the shortcoming is that every node requires extra 
space recording the address of next random number 
node. Generally speaking, in the 32-bit operating 
system, every node requires four bytes to store the 
memory address of next node, and 64-bit operating 
system needs eight bytes (it also differs based on 

different computer architecture and compiler). 
Therefore, the link-list method to store random 
numbers costs more memory space than the array 
method. 

The method regarding the link-list requires more 
extra memory, and hence use array to temporarily 
store the random number sequence, and dynamically 
adjust the size of memory of this array through 
realloc() function in C/C++ to increase the size of the 
array to prevent from the buffer overflow situations. 
The other three methods respectively use different call 
timing design of realloc() function. The first one is that 
whenever there is a new random number, it will call 
the realloc() function to add the array by 1 in every 
thread. The second is that configure an array in every 
thread according to the amount of all random numbers; 
after the random numbers are generated, realloc() 
function is called to reduce the size of the array to 
accord with the amount of random numbers that are 
actually generated. The third design is that after all the 
random numbers are divided by the amount of threads, 
and there will be an average number p (p=N/m). Each 
thread will be assigned to the array of the p, which 
means all the arrays of the random numbers are 
distributed to every thread. When the amount of 
random numbers exceeds the preconfigured size of 
array, the first method will be adopted to increasing 

 

Figure 2. The process of generating random numbers designed in the study. 



the array through realloc() function. On the contrary, if 
after the random numbers are generated and the 
amount of random numbers is less than the size of the 
array, then the second method will be adopted to 
decreasing the array to meet with the actual size of the 
array of the random numbers. 

The aforementioned three methods to dynamically 
adjusting the array to temporarily store random 
numbers have their own advantages and shortcomings. 
The advantage of the first method is that it can 
completely and dynamically adjust the size of the 
array according to the amount of random numbers, and 
always maintain the optimal memory usage. However, 
since realloc() function is required to adjust the size of 
the array whenever random numbers are generated, to 
re-allocate the virtual memory frequently is necessary, 
which leads to more extra time on the reallocation of 
memory. And the executing number of re-allocating 
the size of memory approximately equals the amount 
of random numbers (N). The advantage of the second 
method is that the realloc() function is used the least, 
the number of which equals the amount of multi-
thread m, but the shortcoming is that in the beginning 
it will occupy the virtual memory with m arrays of all 
the random numbers (m*N). The third method 
combines the advantage of the first with that of the 
second; the occupied total virtual memory space in the 
beginning is the size of the array of the total amount of 
random numbers N (m*p=N). The realloc() function 
only appears when the amount of random numbers 
exceeds the size of the array within the threads and 
when reducing the size of the array, so it is used far 
less than the first method. 

The random number generator in this study uses 
polynomial algorithm, and the main structure rests on 
the multi-layer and fixed-length random number base 
array (Length =32), and therefore there are several 
method to taken the computing apart when processing 
the parallelization. The most basic method is parallel 
cutting, which aims to do the partition of the random 
number computing base in Layer 1. As Fig. 3 shows, 
when using the 4 threads to do the parallel computing, 
have the random number base array in Layer 1 cut into 
4 sets of random number array (each set has 8 random 
numbers), and respectively bring in the sets of random 
numbers and the random number base array of the 
lower layers (from Layer 2 to Layer K) to every thread 
to do the computing. After finishing the computing, 
have the random numbers from each thread combined 
according to the series to generate all the pseudo-
random number sequence. Yet, the shortcoming of this 
method is that when the amount of threads cannot be 
divided by 32, then all the computing cannot be 
equally distributed to each thread. In addition, since 
each layer has only 32 random numbers, it can only 
use the 32 threads at most. 

Given that there are several restrictions regarding 
the first method of parallel computing partition, this 
study adopts the method of equally distributing the 
total amount to do the computing partition. When 
doing the partitioning of equal distribution, have the 
combinations of all the random number computing 

base array cut and distribute the cut range of the array 
to each thread to do the computing. The combinations 
of all the random number base arrays equal the 
computing number of times of all the random numbers; 
if the random number base array of 3 layers is used, 
then the total number of times of computing the 
random numbers is 32 to the third power. After cutting 
and equally distributing, the computing range of each 
thread appears to be a vertical partition. Take 4 threads 
for example, the array computing range of the first 
thread starts computing from [the first in Layer 1/ the 
first in Layer 2/ the first in Layer 3] and circulate the 
computing to [the eighth in Layer 1/ the thirty-second 
in Layer 2/ the thirty-second in Layer 3] (equivalent to 
multidimensional arrays [0][0][0] ~ [7][31][31]). The 
computing range of the second thread starts from [the 
ninth in Layer 1/ the first in Layer 2/ the first in Layer 
3] to [the sixteenth in Layer 1/ the thirty-second in 
Layer 2/ the thirty-second in Layer 3] (equivalent to 
multidimensional arrays [8][0][0] ~ [15][31][31]). 
Nearly every thread can get to 8 * 32 * 32 random 
number computing combinations, i.e. approximate 
amount of random numbers generated. Fig. 4 shows 
the diagram of the aforementioned partition method of 
equal distribution. 

Fig. 5 shows the detailed executing progress of the 
method of equally distributing the total amounts. 
According to the demanding base layer numbers, have 
the total amount of random number calculated and 
equally distribute the total amount based on the 
amount of threads. After that, every thread gets the 
computing range among the total amount, and the 
computing ranges turns into the starting position and 
ending position of the array, and then it is the 
computing range of an array. Every thread with 
different array ranges is calculated to get the random 
numbers that meets the demand, and send the result to 
the main thread, and finally main thread collects all of 
the random number series of every thread to get a 
complete computing result of random numbers.  

The method of equally distributing and partitioning 
the total amount to cut the computing base arrays can 
not only effectively solve the problem that the first 
partition method can only use 32 threads at most, but 
can also more equally distribute random number 
computing times to each thread, making the 
parallelized pseudo-random number generator 
generate pseudo-random number sequence more 
efficiently. 

 

Figure 3. The partition of random number sequence base in layer 1. 



 

V. THE DESIGN OF PARALLELIZED 

EXPERIMENTAL MODEL AND ANALYSIS OF 

EXPERIMENTAL DATA 

To focus on the pseudo-random number generation 
and the parallelization designed in the study, we start 
from one thread to gradually increase the amount of 
threads (increasing four threads every time) to test the 
speeding effect of its generation of random numbers 
and test the using rate of memory of the four methods 
of temporarily storing random numbers. The 
experimentation is divided into two parts, multi-
threading acceleration test and memory usage amount 
test. (1). During the experiment of the multi-threading 
acceleration test, we respectively test the four methods 
of temporarily storing random numbers and test the 
amount of random numbers, of which the number of 
layer of the random number base is 5, 6 and 7, and 
then take down the average time of each number of 
layers of generating random numbers. (2). During the 
memory usage amount test, we use 18 threads to 
respectively test memory usage amount when the four 
methods of temporarily storing random numbers 
generate one billion (1G) pseudo-random numbers, 
and the sampling interval is 1 second. Table 1 shows 
the hardware specifications of the test host computer 
and the experimental design model. 

As for the part of multi-threading acceleration test, 
first of all, we conduct the test on the original pseudo-
random number generator (without the multi-threaded 
parallelization). This pseudo-random number 
generator runs the usual single-thread program and 

uses arrays to temporarily store all the generated 
random numbers. Table 2 is the result data of the time 
of generating pseudo-random numbers. If the index is 
the same, then the time of generating random 
numbers is practically the same. The rightmost 
column is the average time of the random number 
generation of each layer. 

Table 3 demonstrates the result data of speeding 
test of the parallelized pseudo-random number 
generator designed in this study. The left column is 
the amount of the threads, and we start from one 
thread and gradually increase four threads to test until 
reaching 60 threads. In the test of every thread 
amount, we also test the links and the three method of 
temporarily storing random numbers which use arrays. 
To focus on all the random numbers in every random 
number base layers (index=5,6,7) and test the time 
they are generated, and then calculate to get the 
average time of random number generation of this 
layer. The experiment data do not include the 

TABLE 1.  HARDWARE SPECIFICATIONS OF THEST HOST COMPUTER 

AND THE MODEL OF EXPERIMENT. 

Specification of the computer: 

CPU Intel(R) Xeon(R) E7530 CPU @ 1.87GHz (true 24 

cores CPU, HT enabled) 

Memory 529,322,584 KB 

OS Linux 2.6.32-5-amd64 x86 64 GNU/Linux 

Preparation operations: 

1. Clear the Linux cache - "echo 3 > /proc/sys/vm/drop_caches" 

2. Flush the disk cache - "sync" 

The number of base layers and the amount of demanding 

random numbers: 

1. Multi-thread acceleration test: range of random numbers 

between 1 ~ following values respectively 
- 5 layers { 1048577, 2097152, 4194304, 8388608, 16777216, 

 33554432} 

- 6 layers { 33554433, 67108864, 134217728, 268435456, 
 536870912, 1073741824} 

- 7 layers {1073741825, 2147483648, 4294967296} 

2. Memory usage test: range of random numbers between  
1 ~ 1,073,741,824 

Multi-thread stepping interval: 

 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60 

Methods of temporarily storing random numbers: 

1. Link List: Single Direction 

2. Array Method 1: Reallocate Array Size Random Number N 
Times 

3. Array Method 2: Reallocate Array Size T Threads Times 

4. Array Method 3: Reallocate Array Size 1 Time or size exceed 

N Times 

Memory usage amount: 

1. Run the "ps -au" command to get the values of "VSZ" and 
"RSS" 

2. Use 18 threads to respectively test memory usage amount 

3. Sampling interval is 1 second 

4. Take down the memory usage since the threads generated and 
the computation finished 

 

 

Figure 5. The process of partition method of equal distribution of 

the total amount (4 threads). 

 

Figure 4. Diagram of partition method of equal distribution of the 

total amount. 



random number layers that are 2,3,4; when the 
random number base layers are four and the lower 
layers, the generation time is less than 1 second and 
thus cannot effectively have the speeding effect. 
About the characteristics of multi-threading 
acceleration curve, please refer to Fig. 6, Fig. 7 and 
Fig. 8. 

Fig. 6 shows the graph of the average time of 
generating random number of each thread amount 
when using 5-layers random number base. When using 
the link-list as the method to temporarily store random 
numbers, if the amount of threads is 24, it will reach 
the best speeding effect; but when the amount of 
threads is 28, the speed will start to decrease, and then 
the random number generation time of each thread 
will be half of time one thread (the average time of 
one thread is 18 seconds, and the average time of 36 to 
60 threads is 9 seconds). When using the first array 
storage method, the acceleration effect of multi-
threads will stop accelerating after using 
approximately 12 threads. Compared to the previous 
two results, the second array method and the third 
array storage method have better multi-thread 
acceleration effect but stop accelerating after the 
thread usage amount reaches 24.  

Fig. 7 is the graph of the average time of 
generating random number of each thread amount 
when using 6-layers random number base. Regarding 
the link-list, when the amount of threads is 16, it 
reaches the highest acceleration effect; when the 
amount of threads is more than 16, the acceleration 
will decrease. In the first method of array storage, 

when the amounts of threads are 4 and 8, the speed 
significantly decreases to be slower than 1 thread by 
one time. When the amount of threads is 16, the 
acceleration effect is the most obvious, but when the  

 

 

TABLE 3. THE RESULT DATA OF MULTI-THREADING PARALLEL ACCELERATION. 

 Index = 5 
{1048577, 2097152, 4194304, 8388608, 16777216, 33554432} 

Index = 6 
{33554433, 67108864, 134217728, 268435456, 536870912, 1073741824} 

Index = 7 
{1073741825,2147483648,4294967296} 

 
Link List 

Array Method 
Link List 

Array Method 
Link List 

Array Method 

 1 2 3 1 2 3 1 2 3 

1 18.39  18.19  17.95  17.76  730.77  721.86  710.72  710.10  27411.18  27231.94  27206.41  27320.43  

4 4.91  7.57  4.52  4.53  189.25  1525.99  177.73  177.40  6903.46  57735.83  6831.66  6843.92  

8 3.02  4.98  2.30  2.30  106.20  1265.22  88.82  88.83  3482.71  10093.27  3419.55  3408.57  

12 2.53  3.89  1.76  1.71  84.35  600.17  59.55  59.58  2356.13  16123.72  2279.62  2285.15  

16 2.38  3.67  1.13  1.11  83.45  256.46  44.69  44.71  2027.33  12746.84  1786.12  1786.95  

20 2.37  3.62  0.92  0.92  157.06  306.62  35.81  36.21  1653.19  7721.28  1431.27  1430.06  

24 2.34  3.65  0.77  0.80  249.21  256.58  29.82  30.40  1414.60  11899.90  1199.95  1216.53  

28 2.36  3.70  0.85  0.85  270.89  266.41  33.91  33.93  1420.65  6903.53  1366.39  1364.76  

32 7.24  3.61  0.76  0.77  293.45  239.03  29.69  29.75  1417.06  6762.04  1202.81  1197.45  

36 8.71  3.76  0.68  0.68  302.95  207.93 26.80  26.52  1475.52  6594.05  1073.29  1079.98  

40 8.66  3.99  0.75  0.77  300.35  178.74  26.45  26.51  1739.71  5862.46  1108.14  1114.84  

44 8.75  4.10  0.70  0.70  323.99  168.95  24.68  24.68  2150.40  5090.79  1035.14  1036.77  

48 8.62  4.67  0.73  0.76  331.93  177.47  23.59  23.48  2267.76  5361.10  971.01  970.22  

52 9.02  4.71  0.80  0.79  334.09  157.68  24.52  24.59  2657.33  4861.39  974.48  981.47  

56 9.03  5.06  0.75  0.77  336.50  189.63  24.30  24.63  2756.16  3858.91  976.37  980.14  

60 8.89  5.18  0.77  0.75  338.10  169.64  24.21  24.30  2832.96  4552.38  986.64  978.74  

 

TABLE 2. THE RESULT DATA OF ORIGINAL PSEUDO-RANDOM 

NUMBER GENERATOR 

# of 

index 
Number of values 

Generation times 

Times (sec) Avg. 

5 32^4+1 1,048,577 17.442 17.471 

 32^4*2 2,097,152 16.973  

 32^4*4 4,194,304 17.375  

 32^4*8 8,388,608 17.670  

 32^4*16 16,777,216 17.809  

 32^5 33,554,432 17.559  

6 32^5+1 33,554,433 698.639 703.980 

 32^5*2 67,108,864 694.572  

 32^5*4 134,217,728 696.448  

 32^5*8 268,435,456 704.053  

 32^5*16 536,870,912 711.341  

 32^6 1,073,741,824 718.831  

7 32^6+1 1,073,741,825 25948.942 
26011.56

2 

 32^6*2 2,147,483,648 26010.398  

 32^6*4 4,294,967,296 26075.346  

 



amount of threads is more than 20, the acceleration 
effect is not clear. In the second and third array storage 
methods, it is obvious to tell there are two phases of 
acceleration effect. When the amount of threads is 24, 
it reaches the best effect in the first phase; when the 
amount of threads is 48, it gets a faster acceleration 
effect than the first phase, and the acceleration effect is 
close to zero after that. 

Fig. 8 is the graph of the average time of 
generating random number of each thread amount 
when using 7-layers random number base. When using 
40 threads, the link-list reaches the best acceleration 
effect and then begins to slow down. When using the 
first array storage method, the acceleration effect is the 
worst and cannot compete with the other three. When 
using four threads, the acceleration effect is negative; 
when using 8 threads, the acceleration effect begins to 
be clear but is not stable. Using the second and the 
third array storage methods can reach the best 
acceleration effect of two phases with the 24 threads 
and 48 threads. 

Table 4 shows the four parallelized random 
number storage methods that have the threads amount 
of the best acceleration effect and acceleration rate. 
Using the second and third method of array storage 
can reach the best acceleration rate, 29.83 and 29.97 in 
the 6-layers random number base. 

The four methods to temporarily storing random 
numbers proposed in this study helps solve the 
problem of the inability to accurately allocate random 
number storage space and allows each thread to 
temporarily store all the generated random numbers of 
this thread. However, according to the test result, 
when generating different amount of pseudo-random 
numbers, the four methods have different acceleration 
and even deceleration. When using only 1 thread, there 
is no significant difference between the four methods’ 
speed of generating random numbers, but when the 
amount of threads starts to rise, the difference comes 
to be obvious. The second and third array methods of 
storing random numbers have nearly the same and best 
acceleration effect. According to Table 4, when the 
random number base is 5, the second method and the 
third method of array storage use 36 threads and can 
reach the acceleration by 25 times at most. When the 
random number base is 6, the second method and the 
third method of array storage use 48 threads and can 
reach the acceleration by 29 times (nearly 30 times) at 
most. When the random number base is 7, the second 
method and the third method of array storage use 48 
threads and can reach the acceleration by 26 times at 
most. Also, it is ostensible that when there are 24 and 
48 threads, the acceleration reaches the best effect, and 
this has to do with our test host computer and meets 
with our initial expectation that the idealist number of 
acceleration should be that the number of actual core 
number is between 24 and 48 simulated by Hyper-
Threading. 

Combining the acceleration effect of the multi-
threaded parallel experiments with the test result of the 
two parts of memory usage rate, we find that the 
acceleration effect is the best when using the second 
method and the third method of array storage. And 
between these two, the third method has better 
memory usage amount because the usage amount of 
VSZ is far smaller than the second method. In other 
words, if we apply the second array method to some 

TABLE 4. THE BEST ACCELERATION RATE OF MULTI-THREADS. 

Index 
Link 

List 

Array Method 

1 2 3 

5 # of threads 24 32 36 36 

 Best speed up rate 7.46 4.83 25.35 25.50 

6 # of threads 16 52 48 48 

 Best speed up rate 8.43 4.46 29.83 29.97 

7 # of threads 24 56 48 48 

 Best speed up rate 18.38 6.74 26.78 26.80 

 

 

Figure 8. The average time of generating random numbers of 7-

layers random number base. 

 

Figure 7. The average time of generating random numbers of 6-

layers random number base. 

 

Figure 6. The average time of generating random numbers of 5-

layers random number base. 



host computers that do not have big memory space 
enough, the system might out of memory. 

 

VI. RELATED APPLICATION AND 

EXPERIMENT WITH OUR PRNG 

Fig. 9 and Fig. 10 show an application of the 3D 
steganography with mesh permutation algorithm in 3D 
model, the order sequence of the vertices and polygons 
was generated with our PRNG method.  

Fig. 11~14 show four applications of the 2D HDRI 
(high dynamic range image) steganography with 
multiple-base algorithm, the embedding  sequence of 
the secure message was also generated with our PRNG 
method. 

 

VII. CONCLUSION AND FUTURE WORK 

The pseudo-random number generator in this study 
can effectively use small amount of memory to 
generate a great deal of pseudo-random numbers, and 
make sure there will not be any repeated random 
numbers. Also, the parallel architecture of multi-
threads helps increase the speed of generating pseudo-
random numbers, and the acceleration effect can reach 
30 times at most. Multi-threads apply the method of 
equal distribution to assign random number computing 
to every thread and further increase the efficiency of 
multi-threads. At the same time, through the equal 
distribution of array sizes, we adjust the method of 
temporarily storing random numbers of the array sizes 
according to the actual usage amount to offer a better 
memory usage rate. Thusly, the pseudo-random 
number generator we propose has the three major 
characteristics of memory saving, fast execution 
efficiency, and the usage of multi-thread 
parallelization to generate a huge amount of pseudo-
random numbers. 

This study has finished implementing the method 
of combining the multi-layer random number base to 
generate a great deal of pseudo-random numbers and 
the multi-thread version of pseudo-random number 
generator. In the future, we can further the study to see 
how to distribute the computing more equally through 
parallelized partition and how to reach the allocation 
optimization of multi-threading dynamic memory. 

 

 

Figure 11. Our PRNG used in the 2D HDRI Steganography. 

 

 

Figure 10. Our PRNG used in the 3D Permutation Steganography 

(shown in Wireframe mode). 

 

Figure 9. Our PRNG used in the 3D Permutation Steganography 

(shown in Surface mode). 
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Figure 14. Our PRNG used in the 2D HDRI Steganography. 

 
Figure 13. Our PRNG used in the 2D HDRI Steganography. 

 

Figure 12. Our PRNG used in the 2D HDRI Steganography. 


